Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data
Chapter Focus Questions

• What are the benefits of graphic display and visual analysis of behavioral data?
• What are the fundamental properties of behavior change over time?
• What are the different visual formats for the graphic display of behavioral data? What are the relative strengths and limitations of each visual format?
• What are the basic parts of a properly constructed line graph?
• What is the purpose of visual analysis?
• How is a visual analysis of behavioral data conducted?
Direct and Repeated Measurement of Behavior

• Data
 – Medium with which the behavior analyst works
 – Results of measurement
 – Empirical basis for decision making
 – Plural
 • These data are
Direct and Repeated Measurement of Behavior

- Consecutive measures, over time
- Data series vs. graphic display

<table>
<thead>
<tr>
<th>Number Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition A</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

Percentage of correct responses
70, 72, 71, 87, 90, 85, 73
Graphic Display

Condition A

Condition B

Number correct

Sessions
Purpose & Benefits of Graphic Display

• Graphic displays
 – Primary function communication
 – Display relationships between dependent variable and independent variable
 – Summarization of data collected
 – Facilitates of accurate analyses
Purpose & Benefits of Graphic Display

• Benefits
 – Immediate access to record of behavior
 – Variations prompt exploration
 – Provides judgmental aid
 • Relatively easy to learn, no predetermined level for determining significance of change, no mathematical properties required
 – Conservative method
 – Encourages independent judgment & interpretation
 – Effective source of feedback
Fundamental Properties of Behavior Change

- Level
- Trend
- Variability
Types of Graphs Utilized in ABA

- Line graph
- Bar graphs
- Cumulative record
- Semilogarithmic charts
 - Standard Celeration Chart
- Scatterplots
Types of Graphs Utilized in ABA Line Graph

- Based on the Cartesian plane
 - Two-dimensional area formed by intersecting lines
 - Points on the plane represent relationships
 - Level of the dependent variable when the independent variable was in effect
 - Comparisons of data points reveals the presence or absence of changes in level, trend, and/or variability
Parts of a Line Graph

• Horizontal axis
• Vertical axis
• Condition change lines
• Condition labels
 – Phase and condition
• Data points
• Data path
• Figure Caption
Figure 5. Rates of hits during baseline and the blocking condition for Arlo.

- **Horizontal Axis (x-axis)**: Sessions
- **Vertical Axis (y-axis)**: Hits per minute
- **Condition Change Lines**
- **Data Path**
- **Data Points**
- **Condition Labels**
- **Figure Legend**

Cooper, Heron, and Heward
Applied Behavior Analysis, Second Edition

Copyright © 2007 by Pearson Education, Inc.
All rights reserved
Line Graph Variations

• Two or more dimensions of the same behavior
• Two or more different behaviors
• Measure of the same behavior under different conditions
• Changing values of the independent variable
• Same behavior of two or more participants
Types of Graphs Utilized in ABA

Bar Graph

- Based on the Cartesian plane
 - No distinct data points representing successive response measures through time
- Functions
 - Displaying and comparing discrete sets of data that ARE NOT related by a common underlying dimension by which the horizontal axis can be scaled (Example)
 - Visual summary of participant or group performance during different experimental conditions
- Provides efficient summary of data
 - DOES NOT allow for analysis of variability & trends in behavior
Sample Bar Graph

Baseline

Generalization/Maintenance

% Completion

% Accuracy

Percent Completion/Accuracy

Cooper, Heron, and Heward
Applied Behavior Analysis, Second Edition

Copyright © 2007 by Pearson Education, Inc.
All rights reserved
Types of Graphs Utilized in ABA
Cumulative Record

• Developed by Skinner
 – Primary means of data collection in EAB
 – Cumulative recorder
 • Experimental subject draws its own graph
 – Shows the number of responses on the ordinate against time on the abscissa
Types of Graphs Utilized in ABA
Cumulative Record

• Number of responses recorded and added to the total number of responses recorded during previous observations
 – Cumulative

• Y-Axis (vertical axis)
 – Represents the total number of responses recorded since the start of data collection
Types of Graphs Utilized in ABA
Cumulative Record

• Display
 – Total number of responses at any given point in time

• Relative rates of response
 – The steeper the slope, the higher the response rate
 • Overall response rate
 • Local response rate
Types of Graphs Utilized in ABA

Cumulative Record

- The steeper the slope, the higher the response rate

Cumulative Number Correct

Sessions
Types of Graphs Utilized in ABA Cumulative Record

• When to use cumulative graph over noncumulative graph
 – Progress toward a specific goal can be measured in *cumulative units*
 • *E.g.*, *Number of new words learned, quarters saved*
 – Graph is used as personal feedback
 • Total progress and relative rate of performance easily detected
 – Target behavior can only occur once per observation period
 • Yes/No
 – Intricate details between behavior & environmental variables are of interest
 • *E.g.*, *Within session analyses*
Equal-interval Graphs

- Distance between any two consecutive points on each axis is always the same
 - Increase/decrease in performance expressed by equal distances on the y-axis
 - Distance between sessions, days, etc. expressed by equal distance on the x-axis
Types of Graphs Utilized in ABA Semilogarithmic Charts

• Ratio or multiply-divide charts
 – One axis is scaled proportionally
 – Double response rate 4 to 8 same as 50 to 100

• All behavior changes of equal proportion are shown by equal vertical distances on the vertical axis
Types of Graphs Utilized in ABA

Standard Celeration Chart

- Developed by Ogden Lindsley
- Standardized method for
 - Charting & analyzing how frequency of behavior changes over time
Types of Graphs Utilized in ABA
Standard Celeration Chart

Cooper, Heron, and Heward
Applied Behavior Analysis, Second Edition
Types of Graphs Utilized in ABA Standard Celeration Chart

• Four standard charts
 – Difference in scaling on horizontal axis
 • Daily chart (140 calendar days)
 • Weekly chart
 • Monthly chart
 • Yearly chart

• What’s standard about the standard celeration chart?
 – Consistent display of *celeration*
Types of Graphs Utilized in ABA
Standard Celeration Chart

• Celeration
 – Linear measure of frequency change across time
 – A factor by which frequency multiples or divides per unit of time
 • Acceleration – accelerating performance
 • Deceleration – decelerating performance

• Standard chart
 – Six, X 10 cycles (vertical axis)
 • 1 per 24 hrs
 • 1,000 per minute
 – Bottom left to top right corner
 • Slope of 34° - celeration value X2
Standard Celeration Chart & Precision Teaching

• Precision Teaching
 – Instructional decision-making system
 – Developed for use with standard celeration chart

• Position
 – Learning best measured as a change in response rate
 – Learning most often occurs through proportional changes in behavior
 – Past changes can predict future learning

• Chart uses estimations for most frequency values
Types of Graphs Utilized in ABA Scatterplot

• Shows relative distribution of individual measures in a data set
• Data points are unconnected
• Depicts changes in value on one axis correlated with changes in value on the other axis
• Patterns suggest certain relationships
 – Sometimes used to discover the temporal distribution of the target behavior
Types of Graphs Utilized in ABA Scatterplot

Constructing Line Graphs

• An effective graph presents data
 – Accurately
 – Completely
 – Clearly
 – Makes visual analysis as easy as possible
 – Does not create distortion or bias interpretation
Constructing Line Graphs
Drawing, scaling, & labeling axes

- Use a balanced ratio between the height and width of the axes
- Relative length of the vertical axis to horizontal axis
 - Suggestions
 - 5:8; 3:4; 1:1.6 ratio y-axis to x-axis
- Horizontal axis
 - Mark equal intervals
 - Left to right chronological succession of equal time periods or response opportunities
 - Use regularly spaced *tic marks*
Constructing Line Graphs
Drawing, scaling, & labeling axes

• Use a scale break to represent discontinuities in the progression of time

Regularly spaced tic marks
Constructing Line Graphs

Drawing, scaling, & labeling axes

• Scaling of vertical axis
 – Most significant feature of the graph
 – Mark the origin at zero
 – Mark the full range of values represented in the data set

Good Practice: Plot the data set against several different vertical axis scales – watch for distortion that may lead to inaccurate interpretations

 – If relatively small changes in performance are socially significant
 • Y-Axis should reflect a smaller range of values
Constructing Line Graphs
Labeling vertical axis

- Brief label, printed, centered to the left and parallel to the vertical axis
Constructing Line Graphs

Condition Change Lines

- Vertical lines
- Extend upward
- Indicate change in treatment or experimental condition
- Solid or dashed lines
 - Major changes – solid
 - Minor changes – dashed
 - Asterisks (*), arrows (→) or other symbols to indicate small changes
Constructing Line Graphs

Condition Change Labels

- Identify conditions in effect during each period of the experiment
- Centered above & between condition change lines
- Brief, but descriptive labels

Baseline Blocking

Cooper, Heron, and Heward
Applied Behavior Analysis, Second Edition

Copyright © 2007 by Pearson Education, Inc.
All rights reserved
Constructing Line Graphs
Data Points & Data Paths

• Place each data point in the exact coordinate of the horizontal and vertical axis
 – If graphing by hand - use a graph paper with appropriately spaced grid lines
• Use bold, easily discernable symbols
 – Use a different symbol for each set of data
Constructing Line Graphs
Data Points & Data Paths

• Draw data paths using a straight line
 – The center of each data point in a given data set to the center of the next data point in the same set
Constructing Line Graphs

Data Points & Data Paths

• **DO NOT CONNECT DATA POINTS IF**…

 – Points fall on either side of a condition change line
 – A significant span of time passed and behavior was not measured
 – There was a discontinuity in time in the horizontal axis (e.g., school vacation)
 • Data were not collected, lost, etc.
 – It is follow-up or post-check data
 • Unless intersession time span same as original experiment
 – Data points fall beyond the values described by the vertical axis
Constructing Line Graphs
Data Points & Data Paths

• Use different styles of lines for multiple data paths on the same graph

• Clearly identify what each data path represents
 – Use arrows or a legend
Constructing Line Graphs
Figure Caption & Printing

• Figure caption
 – Printed below the graph
 – Concise, complete description of figure
 • Direct viewers attention to features of the graph that may be overlooked
 – E.g., scale changes
 • Describe the meaning of any added symbols

• Print graphs in one color - black
Constructing Graphs – Using Computer Software

• Use with caution
 – Check the range of scales available
 – Check the accuracy of data point plotting
 – Check the precision of data paths

• Further information
 – Carr & Burkholder (1998)
 • www.prenhall.com/cooper
Interpreting Graphically Displayed Behavioral Data

• Visual analysis
 – Did behavior change in a meaningful way?
 • If so, to what extent can that change in behavior be attributed to the independent variable?
 – Identification of
 • Variability
 • Level
 • Trend
Interpreting Graphically Displayed Behavioral Data

“It is impossible to interpret graphic data without being influenced by various characteristics of the graph itself.”

– Johnson & Pennypacker, 1993b, p. 320
Interpreting Graphically Displayed Behavioral Data

• Read the graph
 – Figure caption
 – Condition & axis labels
 – Location of numerical value & relative significance of scale breaks

• Visually track each data path
 – Are data paths properly connected?
 – Is the graph distorted?
Interpreting Graphically Displayed Behavioral Data

• Visual analysis
 – Within conditions
 • Number of data points
 • Nature & extent of variability in the data
 • Absolute & relative level of the behavioral measure
 • Direction & degree of any trends in the data
Interpreting Graphically Displayed Behavioral Data

• **Visual analysis**
 – Between conditions
 • Level
 – Mean or median level lines
 • Trend
 • Stability/Variability
 – Across similar conditions
Interpreting Graphically Displayed Behavioral Data

• Level
 – Value on the vertical axis around which a series of data points converge

• Stability
 • When data points fall at or near a specific level

• Mean or median lines
 • Added to represent overall average or typical performance
 • Use with caution - can obscure important variability
Interpreting Graphically Displayed Behavioral Data

• Trend
 – Overall direction taken by the data path
 • Direction
 – Increasing, decreasing, or zero trend
 • Degree
 – Gradual or steep
 • Extent of variability
 – Trend line or line of progress
 • Freehand, least-squares regression equation, or split-middle line of progress
Interpreting Graphically Displayed Behavioral Data

• Variability/Stability
 – Frequency and degree to which multiple measures of behavior yield different outcomes
 • High degree of variability
 – Little or no control over the factors influencing behavior